
Martino Fornasa
Independent Consultant - Trainer

formazione-kubernetes.it | fornasa.it
@mfornasa

Bologna, 12 ottobre 2023

Viaggio all'interno di Prometheus
Architettura, funzionamento, novità
e prospettive future nel monitoraggio cloud native

joind.in/talk/16f8c

(Mostly) host-based

Some History

• MRTG (1995)

• RRDTool (1999)

• Nagios (1999)
• Cacti (2001)

• Zabbix (2001)

• Nagios (1999)

• Cacti (2001)
• Zabbix (2001)

• Nagios (1999)

• Cacti (2001)

• Zabbix (2001)

• Graphite (2008)
• Icinga (2009)

• Graphite (2008)

• Icinga (2009)

Prometheus History

• Developed in 2012 at SoundCloud

• Inspired by borgmon at Google

• Joined the CNCF in 2016 (second project after Kubernetes)

• Main goal: To handle a complex and dynamic environment (cloud,

cloud native, microservices, serverless, …)

Data Model

<metric name>{<label name>=<label value>, ...}

api_http_requests_total{method="POST", handler="/messages"}

Docs: Data Model

[a-zA-Z_:][a-zA-Z0-9_:]*

[a-zA-Z_][a-zA-Z0-9_]*

Unicode

(timestamp milliseconds, value float64)

Metric

Sample

https://prometheus.io/docs/concepts/data_model/

Metric Types Docs: Metric Types

• Counter -> monotonically increasing

• Gauge -> single numerical value that can arbitrarily go up and down

• Histogram -> sampled observations in buckets

• Native Histogram (new) -> dynamic buckets, higher resolution

https://prometheus.io/docs/concepts/metric_types/

Metric and Label Naming Conventions [1] Docs: Best Practices

process_cpu_seconds_total

http_request_duration_seconds

Unit-less Accumulating count

Prefix
(identifies
the domain)

Unit

http_requests_total

Accumulating count with unit

SEE ALSO: Semantic Conventions in OpenTelemetry

https://prometheus.io/docs/practices/naming/
https://opentelemetry.io/docs/concepts/semantic-conventions/

Metric and Label Naming Conventions [2] Docs: Best Practices

http_request_total{
container="grafana-proxy”,
endpoint="nginx-http",
handler="/api/annotations",
instance="10.42.66.101:8080",
job="rancher-monitoring-grafana",
method="get",
namespace="cattle-monitoring-system",
pod="rancher-monitoring-grafana-67d56665c-fwskr",
service="rancher-monitoring-grafana",
statuscode="200"}

https://prometheus.io/docs/practices/naming/

Service Discovery Docs: Configuration

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

Instrumenting Software: Example Docs: Client Libraries

Expose the HTTP Endpoint

Increment the Counter

Define a Counter

https://prometheus.io/docs/instrumenting/clientlibs/

Exporters and Integrations

• Exposing existing metrics from third-party systems

• Databases
• Hardware
• Issue trackers and Continuous Integration
• Messaging Systems
• Storage
• HTTP
• APIs
• Logging
• Other monitoring systems
• …

Docs: Exporters

https://prometheus.io/docs/instrumenting/exporters/

Querying: PromQL

• PromQL: Custom query language

• Recording rules (precompute frequently needed or computationally

expensive expressions)

• What are other TSDBs doing?

• Standardization efforts: CNCF Observability Query Language Standard

(QLS) workgroup

Docs: Querying

https://docs.google.com/document/d/1JRQ4hoLtvWl6NqBu_RN8T7tFaFY5jkzdzsB9H-V370A/edit
https://docs.google.com/document/d/1JRQ4hoLtvWl6NqBu_RN8T7tFaFY5jkzdzsB9H-V370A/edit
https://prometheus.io/docs/prometheus/latest/querying/basics/

Metric name

Metric name Filters

Metric name Filters Time Range

Visualization: Grafana Docs: Grafana Support for Prometheus
Grafana: Dashboard Collection

https://prometheus.io/docs/visualization/grafana/
https://grafana.com/dashboards

High Availability and Scalability Blog: High Availability

https://promlabs.com/blog/2023/08/31/high-availability-for-prometheus-and-alertmanager-an-overview/

High Availability and Scalability Blog: High Availability

https://promlabs.com/blog/2023/08/31/high-availability-for-prometheus-and-alertmanager-an-overview/

Long term storage e altri TSDB
• Non-goal of Prometheus:

• Sophisticated scaling and clustering
• Querying of multiple instances
• Long-term storage
• Downsampling and compaction
• Support of high cardinality

• Projects

• Thanos
• Cortex
• Mimir
• InfluxDB / VictoriaMetrics / TimescaleDB

OpenTelemetry Website: OpenTelemetry

https://opentelemetry.io/

OpenTelemetry Website: OpenTelemetry

• Specification
• Standard protocol
• Semantic Conventions
• Library Ecosystem
• Automatic Instrumentation
• Language SDKs
• Collector (proxy)
• Tooling

• Querying
• Storage
• Visualization

Website: Vendors

https://opentelemetry.io/
https://opentelemetry.io/ecosystem/vendors/

Prometheus as an OpenTelemetry backend

• Prometheus can be a OTel backend using the OTel Prometheus Exporter. Some
open issues around that:
• Metric conversion
• Mapping of resource attributes
• Out of order writes

• Preliminary activities for a native support, including the push protocol Open
points:
• Build the up metric for push model
• Convert between data models (resource attributed, charset)
• Support out of order (currently disabled by default)
• Documentation
• …

Talk at PromCon EU 2023
Grafana Blog Post

https://grafana.com/blog/2023/07/20/a-practical-guide-to-data-collection-with-opentelemetry-and-prometheus/
https://www.youtube.com/live/pKYhMTJgJUU?si=u0I7rvAw7wTQQi-R&t=4560
https://www.youtube.com/live/pKYhMTJgJUU?si=u0I7rvAw7wTQQi-R&t=4560
https://grafana.com/blog/2023/07/20/a-practical-guide-to-data-collection-with-opentelemetry-and-prometheus/

Questions?

joind.in/talk/16f8c

Watch - Prometheus: The Documentary

https://www.youtube.com/watch?v=rT4fJNbfe14

Alerting - Rules

Alerting Rules in Prometheus

Docs: Alerting

https://prometheus.io/docs/alerting/latest/overview/

Alerting - Managing

Alertmanager (separate component)

• Notifications: Email, Chat. Waiting times, repeat intervals.

• Grouping: grouping alerts of similar nature

• Inhibitions: mute a set of alerts given that another alert is firing

• Silencing: from the web interface

Docs: Alertmanager

https://prometheus.io/docs/alerting/latest/alertmanager/

Observability
A possible definition
Observability lets us understand a system from the outside, by letting us ask questions about that system
without knowing its inner workings. Furthermore, it allows us to easily troubleshoot and handle novel problems
(i.e. “unknown unknowns”), and helps us answer the question, “Why is this happening?”

In order to be able to ask those questions of a system, the application must be properly instrumented. That is,
the application code must emit signals such as traces, metrics, and logs. An application is properly instrumented
when developers don’t need to add more instrumentation to troubleshoot an issue, because they have all of
the information they need.

A different one
Can you understand what is happening inside the system — can you understand ANY internal state the system
may get itself into, simply by asking questions from the outside?

This is such a reliable bait and switch that any time you hear someone talking about “metrics, logs and traces”,
you can be pretty damn sure there’s no actual observability going on.

https://opentelemetry.io/docs/concepts/observability-primer/
https://charity.wtf/2020/03/03/observability-is-a-many-splendored-thing/

